
A Controller Based Approach for Web Services
Virtualized Instance Allocation

Sandesh Tripathi , S Q Abbas , Rizwan Beg
1,2,3CSE Department, Integral university, Lucknow

Abstract— Few Service providers provide compute intensive

and data intensive services over web platform; where in
applications can be deployed on demand. These service providers
usually employ machine virtualization for providing cost
effective solution. At the time of infrastructure purchase, one
may opt for a particular instance, assuming that this will satisfy
the computational needs. Whereas considering the case when no
of service request increases, the more robust instance may be
needed.

In this paper, we present a mechanism which provides optimal
instance allocation satisfying the computational needs. Results
show that this approach utilizes the infrastructure in more
optimal manner.

Keywords— Web Service, Allocating Services, Controller

I. INTRODUCTION

Amazon web services (AWS) is a collection of remote
computing services (also called web services) that together
make a cloud computing environment. Few famous services
are Amazon Elastic Compute Cloud (EC2) ,Amazon Simple
DB, Amazon Simple Queue Service(SQS), Amazon Simple
Storage service (S3) and many more. Launched in July 2002,
Amazon Web Services provides on line services for the web
sites or client side services. The services are not directly
exposed to the end user but instead offer functionality that
developers can use.AWS offerings are accessed over HTTP,
using Representational State Transfer (REST) and SOAP
protocols. These services are billed as per usages, but the
usages are measured for billing varies from service to service.
AWS allows obtaining a configurable capacity with minimal
friction. It allows scaling the capacity quickly up and down.
Hence changes the economics involved for computing and
allow one to pay only for the capacity of actual use.
 In this approach analytic performance models are combined
with QCAC (QoS Computation and Configuration
algorithm) , to design a controller mechanism, which runs
periodically to determine the best possible instance type
satisfying QoS parameters under present load, and choose the
same. Such systems will encourage users to use controller
based systems. Due to the dynamic instance shifting such
systems are easily scalable.

II. UNDERSTANDING INSTANCE

BASED SERVICES

A. Need of Utility Computing

Utility computing is a service provisioning model in which
a service provider makes computing resources and
Infrastructure management available to the customer as
needed, and charges for specific usages rather than flat rate.
Utility computing promises to cut costs. AWS was the first,
who offered this model. Among few examples are, A) 6 waves
limited a leading international publisher and developer of
gaming applications on the Facebook platform, uses Amazon
EC2 and Amazon S3 to host its social games with an audience
of more than 50 million players per month, B) 99designs’
massive design marketplace has received over 3.1 Million
unique design submissions from over 53,000 designers around
the world and runs entirely on AWS, C) YouOS uses S3 to
allow 60,000 customers to store 12 GB of storage for its
collaborative web operating system, are among few examples.
Amazon says its services are designed to be scalable, fast,
secure and simple.

B. Virtualization used in AWS

Xen Virtualization: Xen is an open source x86 virtual machine
monitor which can create multiple virtual machines on a
physical machine. Each virtual machine runs an instance of an
operating system. A scheduler is running in the Xen
hypervisor to schedule virtual machines on the processors.
The original Xen implementation schedules virtual machines
according to borrowed virtual time (BVT) algorithm [11]. For
network virtualization, Xen only allows a special privileged
virtual machine called driver domain, or domain 0 to directly
control the network devices. All the other virtual machines
(called guest domains) have to communicate through the
driver domain to access the physical network devices. For this
the driver domain has a set of drivers to control the physical
network devices, and a set of back end interfaces to
communicate with guest domains. The back end interfaces
and the physical drivers are connected by a software bridge
inside the kernel of the driver domain. Each guest domain has
a customized virtual interface driver to communicate with a
back end interface in the driver domain. All packets are sent
from guest domain will be sent to the driver domain through
the virtual interfaces and then sent into the network. All the
packets which are destined to a guest domain will be received

Sandesh Tripathi et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2666-2670.

2666

by the driver domain first, and then transferred to the guest
domain.

III. RELATED WORK

Few studies have evaluated the performance of cloud services,
where as little work has been done in the area of dynamic
instance allocation. Guohui [12], studied the impact of
virtualization on network performance of Amazon EC2 data
centre. They presented a measurement study to characterize
the impact of virtualization on networking performance of the
Amazon Elastic Cloud Computing data centre. They measured
the processor sharing, packet delay, TCP/UDP throughput and
packet loss among Amazon EC2 virtual machines. Simson L.
Garfinkel [20] evaluated and fined out in their study that
Amazon Services have great promise but they lack service
layer agreement. E. Walker[12] benchmarked Amazon EC2
for high performance scientific computing. The author
evaluated how Amazon EC2 can be used for scientific
computing. Our work signifies how dynamic allocation can be
done for instances in agreement to QoS.

IV. ESTIMATION OF QOS

This metric combines the relative deviations of the average
response time , average throughput, and probability of
rejection with respect to the desired goals.
The relative deviation of the average response
time is defined as

 (1)

 is the maximum average response time, which can be

tolerated and is the measured response time.
The properties of the above definition can be given as:

 = 0 if the response time exactly meets

its SLA i.e., = .

 if the response time exceeds its

SLA i.e., . Given that the

measured response time is at least

equal to the sum of the service demands

for all K resources [2], then by using eq. 1 ,it can

be concluded that
 ()/

 0 if the response time does not

meet its SLA i.e., . Then

from eq. 1 it follows that

/

Taking an example if the measured response time is 6 sec
and the maximum response time is 9 sec, then

indicating that there is a

33% loss with respect to the measured response time. For
meeting the SLA it would be necessary to cut down 33%
of the measured response time to meet the SLA.
The relative deviation of the probability of
rejection is similarly as

= (2)

Where is the maximum probability of rejection
tolerated and is the measured probability of
rejection.
The properties of the above definition can be given as:
 if the probability of rejection exactly

meets its SLA i.e., = .

 if the probability of rejection

exceeds its SLA.

 if the probability of rejection

does not meet its SLA i.e., .

The relative deviation of the average throughput is
defined as

= (3)

Where is the measured throughput,
λ ,) is the minimal value between the

arrival rate and the minimum required throughput .
The properties of the above definition can be given as:
 if the throughput meet its SLA i.e.,

 .

 if the throughput exceeds its

SLA i.e., .

 if the throughput does not

meet its SLA i.e., ., .

A single metric QoS can now be defined as a weighted
sum of the three QoS deviations defined above. Thus,
Qos =

Where = are weights, in the interval

[0,1], determined by the management, to indicate the relative
importance of response time, throughput and probability of
rejection. QoS is a dimension less number between -1 and 1.
If all three metrics meet or exceed their SLA, QoS ≥0. If QoS

1 , then at least one of the metrics does not meet its SLA.

V. SYSTEM DESCRIPTION

The computer system consists of a multithreaded server that
receives requests at a rate of requests per second. The
system has m threads and the number of threads and the
number of requests that can be in the system either waiting for
a thread or using a thread equal to n (n m). Thus, requests

Sandesh Tripathi et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2666-2670.

2667

that arrive and find n requests in the system are rejected.
When a thread is executing a request, it is using physical
resource such as CPU or disk. So, the response time of a
request can be broken into the following components: waiting
for a thread (i.e software contention), waiting for a physical
resource, and using a physical resource.
. The Approach for this self configuring web service compute
cloud is assisted by the configuration controller mechanism
that monitors the AWS Cloud, monitors various resources
utilizing content, execute the QCAC (QoS Computation and
Configuration Analysis Component) at regular interval,
computes the best configuration for AWCC (Amazon web
service Compute Cloud). As a result of this controller
mechanism running continuously at regular intervals generates
the reconfiguration commands to instruct the AWS to adapt
the best configuration under present circumstances also
satisfying the QoS.

The Architecture of the configuration controller mechanism
has three main components: Request Capacity Analysing
Component known as RCAC, Resource Utilization Analysing
Component known as RUAC, and QoS Computation and
Configuration Analysis Component known as QCAC. RCAC
analyses the number of arriving requests from different
service requesting computers, and computes parameters like
the load intensity, arrival rate of requests and uses these
statistical parameters for forecasting the load conditions in
next interval. This data is used by QCAC as the input
parameters of the Queuing Model solved by QCAC. The
RUAC component collects the data from various resource s
(e.g CPU, Disks) and also has a count on various completing
request. This parameter helps in computing throughput. The
average service time of a request at a resource can be
computed as the ratio between the resource utilization and the
system throughput. The QCAC generates the best possible
configuration for AWS cloud considering the QoS inputs, the
arriving requests and departing requests.
In the general approach for designing self managing / self
organizing computer system [12], a system is subject to a
work load. There are many factors of parameters and settings
that may affect the performance of such systems. The set of
parameters can be divided into uncontrolled parameters and
controlled parameters. Uncontrolled parameters are that are
not changed dynamically by controller. These parameters are
those that have relatively little impact on performance or that
require a system restart or reboot in order to take effect to take
place. Controlled parameters are those whose settings are
changed dynamically by the controller QCAC, by executing
controller algorithm. The goal of this algorithm is to find
optimized instance under present load, satisfying QoS values.
A set of responses are generated as the result of service
request load and setting of controlled and uncontrolled
parameters. These responses can be divided into primary and
secondary responses. The former are those whose values must
be kept within desired range as specified by Service Layer
Agreement (SLAs) or QoS goals

QCAC Algorithm:

QCAC algorithm for finding close to optimal configuration
for instance allotment-

Step 1 If Service Requests in a particular interval is
greater than > No of requests (n): go to Step
16 , else step 2

Step 2 Check WSDL for incoming service requests
i.e., if P 1 :Go to step13 , if P 2 :Go to step10, if P
3:Go to step 7, if P 4 :Go to step 3,

Step 3 If P 4 , Check for any other type of instance is

being served presently, if yes, go to step 5, else
Step 4

Step 4 Check QoS fitness satisfaction under present
load, if satisfied choose P40 instance , else
choose P33 instance

Step 5 Choose highest priority instance running at
primary level, Check QoS fitness under present
load is satisfied, If yes, choose the nearest
matching priority instance, allot & continue ,
else go to Step 6

Step 6 Go to step 16
Step 7 If P 3, Check if any higher priority instance is

running, If yes, go to step 5, else step 8
Step 8 Check QoS fitness satisfaction under present

load is satisfied, if yes, choose P33,else step 9
Step 9 Choose the nearest matching instance i.e. P31

or P32
Step 10 If P 2,check if any highest priority instance is

running, if yes, go to step 5 ,else step 11
Step 11 Check QoS fitness satisfaction under present

load is satisfied, if yes, choose P22 ,else step 12
Step 12 Choose the nearest matching instance i.e. P22

or P21
Step 13 If P 1 , check if P 11 type request is running, if

yes, go to step15, else step 14
Step 14 Check for QoS fitness satisfaction under

present load, if satisfied choose P12, else Step 16
Step 15 Check for QoS fitness satisfaction under

present load is satisfied, if yes continue with
P11 ,else step 16

Step 16 Discard this request
 Choose Micro Instance (MI), P40

Choose Standard Small Instance (SSI), P33
Choose Standard Large Instance (SLI), P32
Choose Standard Extra Large Instance

(SELI), P31
Choose High Memory Extra Large Instance

(HMELI), P23
Choose High Memory Double Extra Large

Instance (HMDELI), P22
Choose High Memory Quadruple Extra Large

Instance (HMQELI), P21
Choose High CPU Medium Instance (HCMI),

Sandesh Tripathi et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2666-2670.

2668

P12
Choose High CPU Extra large Instance

(HCELI), P11

VI. EXPERIMENTAL RESULTS

 Since EC2’s servers are Linux based virtual machines
running on top of the Zen Virtualization Engine [14]. A Linux
machine having 1.7 GHz x 86 processor, 1.75 GB of RAM,
160 GB of local disk is used for experiments. The
virtualization is implemented on this machine as Amazon web
Services are implementing, using Xen based Virtualization
Environment. This virtual environment is also used by
Amazon. This environment uses Xen hypervisor, the Domain
0, and 9 VM guests. These nine VM guests implemented nine
instances under consideration. The system consists of one
CPU and one disk. The workload is being driven by another
machine using proxy-sniffer (a workload generator), which
can also be used for Amazon EC2. The service demands at the
CPU and disks are 0.03 sec and 0.05 sec, respectively. The
SLA and the respective weights are:

 =0.25,

 = 0.30, and

Table 1 details the instances with their respective weight. The
QCAC algorithm is implemented periodically, for each
interval. QCAC chooses the most optimum instance,
satisfying the QoS, no of service request, workload conditions
etc.

Table 1: Instances and their respective weights

Type Notation Sub division of instances
Micro

Instance type
MI Micro instance (MI), wt (.1),

P40
Standard

Instance
SI Standard Small instance

(SSI), wt (.2), P33
Standard Large instance

(SLI), wt (.3), P32
Standard Extra Large instance

(SELI), wt (.4), P31
High

Memory
Instance

HM High Memory Extra Large
instance (HMELI), wt (.5), P23

High Memory Double Extra
Large instance (HMDELI), wt
(.6), P22

High Memory Quadruple
Extra Large instance
(HMQELI), wt (.7), P21

High CPU
Instance

HC High CPU Medium instance
(HCMI), wt (.8), P12

High CPU Extra Large
instance (HCELI), wt (.9), P11

During experiments, the arrival rate of requests started from a
low of 7 service requests per second and the load was
increased up to a maximum of 23 service requests per second,
during a period of 1 hr and 40 min. The controller interval is
of 300 seconds. During any interval with peak average loads
of 23 service requests per second, 6900 requests arrive. At the
maximum load of 23 service request per second, the resource
bottleneck reaches close to 100 %, after this load was not
increased further otherwise the probability of rejection would
be turning up too high.

After the arrival rate reaches to its maximum value of 23
service request per second, the disk utilization reaches to its
max of 99% approx, where as for the uncontrolled case the
peak disk utilization value is only of max 83%. When the
controller is disabled not all the system resources are being
utilized optimally. Due to the controller action the system
resources are better utilized, furnishing required QoS. The
controlled system adjusts itself to keep controlled even at
higher loads, where as the uncontrolled system violates the
SLA as soon as the service request reaches to value of 15
requests per second. Hence the controlled system satisfies the
QoS also and gives proper computational facility while saving
cost.

Fig. 1 explains the variation of average response time versus
the arrival of number of requests per second.
It can be seen that as the number of service request per second
reaches to its peak, the response time for controlled system
moves to a value of 1.6 sec and even it violates the SLA for a
very short duration. Whereas the response time for the
uncontrolled system is lower than in comparison to the
controlled system response time. The reason for this is that at
high loads, even 22% of the service requests are rejected and
are kept out of the queue. The controlled system adjusts itself
to meet the SLA as close as possible, minimizing the
probability of rejection at the same time.

Figure 1: Response time under different environments.

Sandesh Tripathi et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2666-2670.

2669

This provides higher throughput (Fig.2). The throughput of
the controlled system is better than the uncontrolled one, due
the lower probability of rejection.

Figure 2: Throughput under controlled and Uncontrolled
environment.

Figure 3:%Savings done using controller

Fig.3 gives a comparison of % Savings in the money to be
given to providers, if different Instances are chosen
dynamically. Having taken the highest computational capacity
allotted permanently the savings are of 23%, but in this case
the resource utilization is poorest. Where in other cases
considering, allotting P21 permanently the saving is of 78% in
controlled case, allotting P22 permanently the saving is of
57% in controlled case, allotting P11 permanently the saving

is of 54% in controlled case, allotting P31 permanently the
saving is of 45% in controlled case, allotting P21 permanently
the saving is of 14% in controlled case. The experiments show
that the controlled system performs better in term of saving
the cost, giving optimum performance satisfying QoS, gives
better throughput and response time.

VII. CONCLUSION

In this paper we present an approach using which dynamic
allocation of instances can be done, which also satisfies QoS.
This controller mechanism is particularly useful for consumer
whose load varies continuously, and mostly their applications
are not heavily loaded with requests. It also illustrates the
concept of virtualization being used by large solution
providers, for allotting various instances.

REFERENCES
[1] www.amazonwebservice.com
[2] Menasce, D.A. and V.A.F. Almeida, Scaling for E- Business:

technologies, models, performance and capacity planning, Prentice Hall,
Upper Saddle River, NJ, 2002

[3] Kleinrock, L., Queuing systems, Vol. 1: Theory
[4] Kishore S. Trivedi, Probability & Statistics with Reliability, Queuing

and Computer Science Applications, PHI
[5] S L Garfinkel, Technical Report TR-08-07: An Evaluation of Amazon’s

Grid Computing Services: EC2,S3 and SQS
[6] XenSource Inc. Xen. http://www.xensourse.com
[7] Amazon web services. Amazon simple storage service (amazon s3),

May 2007. http://aws.amazon.com/s3
[8] K J Duda and D R Cheriton, “ Borrowed- virtual- Time(bvt) scheduling:

supporting latency sensitive threads in a general purpose scheduler” In
proceedings of SOSP’99,Dec 1999.

[9] D A Menansce, M N Bennani, Honglei Ruan, “On the Use of Online
Analytic Performance Models in Self Managing and Self-Organizing
Computer Systems.

[10] D A Menansce, Almeida, V A F Dowdy, Performance by Design:
Computer Capacity planning by Example, Prentice Hall, 2004

[11] XenSource Inc. Xen. http://www.xensource.com
[12] E. Walker ,”Benchmarking Amazon EC2for high performance scientific

computing”, USENIX- Oct 2008.
[13] Guohui Wang, T. S. Eugene Ng, The Impact of Virtualization on

Network Performance of Amazon EC2 Data Centre, INFOCOM2010
[14] Y. Zhang, N.Duffield, V. Paxson, and S. Shenkar,”On The Constancy

Of Internet Path Properties”,in proceedings of IMW’01,Nov.2001
[15] D. Ersoz,M.S.Yousif and C.R. Das, ”Characterizing Network Traffic In

A Cluster Based, Multi-Tier Data Centre,”ICDCS’07
[16] B. Abraham, J. Leodolter, and J. Leododalter, “Statistical Methods of

Forecasting,”John Wiley & Sons,1983
[17] D.A. Menasce, ”Automatic QoS Control,”IEEE Internet Computing,

Jan/Feb. 2003.
[18] V.J.Rayward-Smith, I.H.Osman, C.R.Reeves, eds ,Modern Heuristic

Search Methods, John Wiley & Sons, Dec. 1996
[19] W.E. Walsh, G. Tesauro, J.O.Kephart, and R. Das, “Utility Functions in

Autonomic Computing,” Proc. IEEE International Conf. Autonomic
Computing(ICAC’04), New York, 2004

[20] “Gogrid,” http://www.gogrid.com/
[21] Simson L. Garfinkel, Technical Report TR-08-07:An Evaluation of

Amazon’s Grid Computing Services: EC2, S3 and SQ

Sandesh Tripathi et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2666-2670.

2670

